老师们好!
看了DPARSF与REST的新功能,有以下问题想明确一下,比较多,麻烦大家了!
1. In addressing head motion concerns in resting-state fMRI analyses (Power et al., 2012; Satterthwaite et al., 2012b; Van Dijk et al., 2012), we provide voxel-specific head motion calculation and correction (Fig. 4) (Satterthwaite et al., 2012a; Yan et al., 2012). DPARSF also calculate the voxel-specific mean framewise displacement (FD) and volume-level mean FD (Power et al., 2012) for accounting head motion at group-level analysis.
* voxel-specific head motion calculation and correction:是否预处理除Realign外,做基于Voxel水平的头动校正,加强了纠正头动的效果?
2. The data scrubbing approach is also supported with different methods (Fig. 5): 1) model each bad time point as a separate regressor in nuisance covariates regression, 2) delete bad time points, 3) interpolate bad time points with nearest neighbor, linear or cubic spline interpolation.
是否选择Head motion scrubbing regressor后,可以自动完成上述三步?
voxel-specific mean framewise displacement (FD) and volume-level mean FD:得到这些参数后,在群组分析时,应以此为协变量吗?
3. If Slice Number is set to 0, then retrieve the slice number from the NIfTI images. The slice order is then assumed as interleaved scanning: [1:2:SliceNumber, 2:2:SliceNumber]. The reference slice is set to the slice acquired at the middle time point, i.e., ceil(SliceNumber/2). SHOULD BE EXTREMELY CAUTIOUS!!!
是否可以理解为:层数从图像中自行识别,然后,扫描顺序将被识别为间隔扫描,参考层设置为时间中点的层数SliceNumber/2?那么Slice number与order还需要自己填入吗?
4. Spatial normalization and smooth can be performed on the calculated resting-state fMRI derivatives.
该功能怎么理解?resting-state fMRI derivatives具体指什么?
5. More resting-state fMRI metrics are included, e.g., voxel-mirrored homotopic connectivity (VMHC) (Zuo et al., 2010), Degree Centrality (Buckner et al., 2009) and connectome-wide association studies based on multivariate distance matrix regression.
Degree Centrality是否有默认的r值?因为新版rest中是要自己设置r的。connectome-wide association studies based on multivariate distance matrix regression:该功能包含内容不大明白,严老师可否具体说明一下?
6. Gaussian random field (GRF) theory multiple comparison correction (like easythresh in FSL) was supported. The smoothness could be evaluated for GRF correction or AlphaSim correction. (GUI by Xin-Di Wang, algorithm by YAN Chao-Gan)
REST Smoothest有些不明白,为什么是input T map估计平滑核,FWHM在预处理中已经设定了啊。REST-GRF中,只需输入voxel-level与Cluster-level的P值?无需输入smooth值?
Forums
Re