New resting-state fMRI related studies at PubMed

Top-down and bottom-up alterations of connectivity patterns of the suprachiasmatic nucleus in chronic insomnia disorder

Wed, 02/22/2023 - 11:00

Eur Arch Psychiatry Clin Neurosci. 2023 Feb 22. doi: 10.1007/s00406-022-01534-1. Online ahead of print.


The importance of the suprachiasmatic nucleus (SCN, also called the master circadian clock) in regulating sleep and wakefulness has been confirmed by multiple animal research. However, human studies of SCN in vivo are still nascent. Recently, the development of resting-state functional magnetic resonance imaging (fMRI) has made it possible to study SCN-related connectivity changes in patients with chronic insomnia disorder (CID). Hence, this study aimed to explore whether sleep-wake circuitry (i.e., communication between the SCN and other brain regions) is disrupted in human insomnia. Forty-two patients with CID and 37 healthy controls (HCs) underwent fMRI scanning. Resting-state functional connectivity (rsFC) and Granger causality analysis (GCA) were performed to find abnormal functional and causal connectivity of the SCN in CID patients. In addition, correlation analyses were conducted to detect associations between features of disrupted connectivity and clinical symptoms. Compared to HCs, CID patients showed enhanced rsFC of the SCN-left dorsolateral prefrontal cortex (DLPFC), as well as reduced rsFC of the SCN-bilateral medial prefrontal cortex (MPFC); these altered cortical regions belong to the "top-down" circuit. Moreover, CID patients exhibited disrupted functional and causal connectivity between the SCN and the locus coeruleus (LC) and the raphe nucleus (RN); these altered subcortical regions constitute the "bottom-up" pathway. Importantly, the decreased causal connectivity from the LC-to-SCN was associated with the duration of disease in CID patients. These findings suggest that the disruption of the SCN-centered "top-down" cognitive process and "bottom-up" wake-promoting pathway may be intimately tied to the neuropathology of CID.

PMID:36811711 | DOI:10.1007/s00406-022-01534-1

Progressive Voxel-Wise Homotopic Connectivity from childhood to adulthood: Age-related functional asymmetry in resting-state functional magnetic resonance imaging

Wed, 02/22/2023 - 11:00

Dev Psychobiol. 2023 Mar;65(2):e22366. doi: 10.1002/dev.22366.


Homotopic connectivity during resting state has been proposed as a risk marker for neurologic and psychiatric conditions, but a precise characterization of its trajectory through development is currently lacking. Voxel-Mirrored Homotopic Connectivity (VMHC) was evaluated in a sample of 85 neurotypical individuals aged 7-18 years. VMHC associations with age, handedness, sex, and motion were explored at the voxel-wise level. VMHC correlates were also explored within 14 functional networks. Primary and secondary outcomes were repeated in a sample of 107 adults aged 21-50 years. In adults, VMHC was negatively correlated with age only in the posterior insula (false discovery rate p < .05, >30-voxel clusters), while a distributed effect among the medial axis was observed in minors. Four out of 14 considered networks showed significant negative correlations between VMHC and age in minors (basal ganglia r = -.280, p = .010; anterior salience r = -.245, p = .024; language r = -.222, p = .041; primary visual r = -.257, p = .017), but not adults. In minors, a positive effect of motion on VMHC was observed only in the putamen. Sex did not significantly influence age effects on VMHC. The current study showed a specific decrease in VMHC for minors as a function of age, but not adults, supporting the notion that interhemispheric interactions can shape late neurodevelopment.

PMID:36811370 | DOI:10.1002/dev.22366

Polygenic risk score for attention-deficit/hyperactivity disorder and brain functional networks segregation in a community-based sample

Wed, 02/22/2023 - 11:00

Genes Brain Behav. 2023 Feb 21:e12838. doi: 10.1111/gbb.12838. Online ahead of print.


Neuroimaging studies suggest that brain development mechanisms might explain at least some behavioural and cognitive attention-deficit/hyperactivity disorder (ADHD) symptoms. However, the putative mechanisms by which genetic susceptibility factors influence clinical features via alterations of brain development remain largely unknown. Here, we set out to integrate genomics and connectomics tools by investigating the associations between an ADHD polygenic risk score (ADHD-PRS) and functional segregation of large-scale brain networks. With this aim, ADHD symptoms score, genetic and rs-fMRI (resting-state functional magnetic resonance image) data obtained in a longitudinal community-based cohort of 227 children and adolescents were analysed. A follow-up was conducted approximately 3 years after the baseline, with rs-fMRI scanning and ADHD likelihood assessment in both stages. We hypothesised a negative correlation between probable ADHD and the segregation of networks involved in executive functions, and a positive correlation with the default-mode network (DMN). Our findings suggest that ADHD-PRS is correlated with ADHD at baseline, but not at follow-up. Despite not surviving for multiple comparison correction, we found significant correlations between ADHD-PRS and segregation of cingulo-opercular networks and DMN at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation. These directions of associations corroborate the proposed counter-balanced role of attentional networks and DMN in attentional processes. However, the association between ADHD-PRS and brain networks functional segregation was not found at follow-up. Our results provide evidence for specific influences of genetic factors on development of attentional networks and DMN. We found significant correlations between polygenic risk score for ADHD (ADHD-PRS) and segregation of cingulo-opercular networks and default-mode network (DMN) at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation.

PMID:36811275 | DOI:10.1111/gbb.12838

High and low worriers do not differ in unstimulated resting-state brain connectivity

Wed, 02/22/2023 - 11:00

Sci Rep. 2023 Feb 21;13(1):3052. doi: 10.1038/s41598-023-28333-5.


Chronic, excessive and uncontrollable worry presents an anxiety rising and distressing mental activity relevant in a range of psychological disorders. Task based studies investigating its underlying neural mechanisms reveal fairly heterogenous results. The current study aimed to investigate pathological worry related effects on the functional neural network architecture in the resting unstimulated brain. Using resting-state functional magnetic resonance imaging (rsfMRI) we compared functional connectivity (FC) patterns between 21 high worriers and 21 low worriers. We, on the one hand, conducted a seed-to-voxel analysis based on recent meta-analytic findings and, on the other hand, implemented a data-driven multi voxel pattern analysis (MVPA) approach to yield brain clusters showing connectivity differences between the two groups. Additionally, the seed regions and MVPA were used to investigate whether whole brain connectivity is associated with momentary state worry across groups. The data did not reveal differences in resting-state FC related to pathological worry, neither by the seed-to-voxel or MVPA approach testing for differences linked to trait worry nor by using the MVPA to test for state worry related aberrations. We discuss whether the null findings in our analyses are related to spontaneous fluctuations in momentary worry and the associated presence of multiple fluctuating brain states that could cause mutually cancelling effects. For future studies investigating the neural correlates of excessive worry, we propose a direct worry induction for better control of the situation.

PMID:36810628 | DOI:10.1038/s41598-023-28333-5

Cortico-striatal networking deficits associated with advanced HIV disease and cocaine use

Wed, 02/22/2023 - 11:00

J Neurovirol. 2023 Feb 21. doi: 10.1007/s13365-023-01120-8. Online ahead of print.


Cocaine use is disproportionately prevalent in people with HIV (PWH) and is known to potentiate HIV neuropathogenesis. As both HIV and cocaine have well-documented cortico-striatal effects, PWH who use cocaine and have a history of immunosuppression may exhibit greater FC deficits compared to PWH without these conditions. However, research investigating the legacy effects of HIV immunosuppression (i.e., a history of AIDS) on cortico-striatal functional connectivity (FC) in adults with and without cocaine use is sparse. Resting-state functional magnetic resonance imaging (fMRI) and neuropsychological assessment data from 273 adults were analyzed to examine FC in relation to HIV disease: HIV-negative (n = 104), HIV-positive with nadir CD4 ≥ 200 (n = 96), HIV-positive with nadir CD4 < 200 (AIDS; n = 73), and cocaine use (83 COC and 190 NON). Using independent component analysis/dual regression, FC was assessed between the basal ganglia network (BGN) and five cortical networks: dorsal attention network (DAN), default mode network, left executive network, right executive network, and salience network. There were significant interaction effects such that AIDS-related BGN-DAN FC deficits emerged in COC but not in NON participants. Independent of HIV, cocaine effects emerged in FC between the BGN and executive networks. Disruption of BGN-DAN FC in AIDS/COC participants is consistent with cocaine potentiation of neuro-inflammation and may be indicative of legacy HIV immunosuppressive effects. The current study bolsters previous findings linking HIV and cocaine use with cortico-striatal networking deficits. Future research should consider the effects of the duration of HIV immunosuppression and early treatment initiation.

PMID:36809507 | DOI:10.1007/s13365-023-01120-8

Measures of Brain Connectivity and Cognition by Sex in US Children

Wed, 02/22/2023 - 11:00

JAMA Netw Open. 2023 Feb 1;6(2):e230157. doi: 10.1001/jamanetworkopen.2023.0157.


IMPORTANCE: The neurobiological underpinnings underlying sex differences in cognition during adolescence are largely unknown.

OBJECTIVE: To examine sex differences in brain circuitry and their association with cognitive performance in US children.

DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study analyzed behavioral and imaging data from 9- to 11-year-old children from the Adolescent Brain Cognitive Development (ABCD) study between August 2017 and November 2018. The ABCD study is an open-science, multisite study following up more than 11 800 youths into early adulthood for 10 years with annual laboratory-based assessments and biennial magnetic resonance imaging (MRI). The selection of ABCD study children for the current analysis was based on the availability of functional and structural MRI data sets in ABCD Brain Imaging Data Structure Community Collection format. Five hundred and sixty participants who had excessive level of head motion (>50% of time points with framewise displacement >0.5 mm) during resting-state functional MRI were excluded from the analyses. Data were analyzed between January and August 2022.

MAIN OUTCOMES AND MEASURES: The main outcomes were the sex differences in (A) global functional connectivity density at rest and (B) mean water diffusivity (MD) and (C) the correlation of these metrics with total cognitive scores.

RESULTS: A total of 8961 children (4604 boys and 4357 girls; mean [SD] age, 9.92 [0.62] years) were included in this analysis. Girls had higher functional connectivity density in default mode network hubs than boys, predominantly in the posterior cingulate cortex (Cohen d = -0.36), and lower MD and transverse diffusivity, predominantly in the superior corticostriatal white matter bundle (Cohen d = 0.3). Age-corrected fluid and total composite scores were higher for girls than for boys (Cohen d = -0.08 [fluid] and -0.04 [total]; P = 2.7 × 10-5). Although total mean (SD) brain volume (1260 [104] mL in boys and 1160 [95] mL in girls; t = 50; Cohen d = 1.0; df = 8738) and the proportion of white matter (d = 0.4) were larger for boys than for girls, the proportion of gray matter was larger for girls than for boys (d = -0.3; P = 2.2 × 10-16).

CONCLUSIONS AND RELEVANCE: The findings of this cross-sectional study on sex differences in brain connectivity and cognition are relevant to the future creation of brain developmental trajectory charts to monitor for deviations associated with impairments in cognition or behavior, including those due to psychiatric or neurological disorders. They could also serve as a framework for studies investigating the differential contribution of biological vs social or cultural factors in the neurodevelopmental trajectories of girls and boys.

PMID:36809470 | DOI:10.1001/jamanetworkopen.2023.0157

Internet gaming disorder and tobacco use disorder share neural connectivity patterns between the subcortical and the motor network

Wed, 02/22/2023 - 11:00

Hum Brain Mapp. 2023 Feb 20. doi: 10.1002/hbm.26233. Online ahead of print.


Internet gaming disorder (IGD) and tobacco use disorder (TUD) are globally common, non-substance-related disorders and substance-related disorders worldwide, respectively. Recognizing the commonalities between IGD and TUD will deepen understanding of the underlying mechanisms of addictive behavior and excessive online gaming. Using node strength, 141 resting-state data were collected in this study to compute network homogeneity. The participants included participants with IGD (PIGD: n = 34, male = 29, age: 15-25 years), participants with TUD (PTUD: n = 33, male = 33, age: 19-42 years), and matched healthy controls (control-for-IGD: n = 41, male = 38, age: 17-32 years; control-for-TUD: n = 33, age: 21-27 years). PIGD and PTUD exhibited common enhanced node strength between the subcortical and motor networks. Additionally, a common enhanced resting-state functional connectivity (RSFC) was found between the right thalamus and right postcentral gyrus in PIGD and PTUD. Node strength and RSFC were used to distinguish PIGD and PTUD from their respective healthy controls. Interestingly, models trained on PIGD versus controls could classify PTUD versus controls and vice versa, suggesting that these disorders share common neurological patterns. Enhanced connectivity may indicate a greater association between rewards and behaviors, inducing addiction behaviors without flexible and complex regulation. This study discovered that the connectivity between the subcortical and motor networks is a potential biological target for developing addiction treatment in the future.

PMID:36807959 | DOI:10.1002/hbm.26233

Abnormal functional connectivity of the posterior hypothalamus and other arousal regions in surgical temporal lobe epilepsy

Wed, 02/22/2023 - 11:00

J Neurosurg. 2023 Feb 17:1-11. doi: 10.3171/2023.1.JNS221452. Online ahead of print.


OBJECTIVE: This study sought to characterize resting-state functional MRI (fMRI) connectivity patterns of the posterior hypothalamus (pHTH) and the nucleus basalis of Meynert (NBM) in surgical patients with mesial temporal lobe epilepsy (mTLE), and to investigate potential correlations between functional connectivity of these arousal regions and neurocognitive performance.

METHODS: The study evaluated resting-state fMRI in 60 patients with preoperative mTLE and in 95 healthy controls. The authors first conducted voxel-wise connectivity analyses seeded from the pHTH, combined anterior and tuberal hypothalamus (atHTH; i.e., the rest of the hypothalamus), and the NBM ipsilateral (ipsiNBM) and contralateral (contraNBM) to the epileptogenic zone. Based on these results, the authors included the pHTH, ipsiNBM, and frontoparietal neocortex in a network-based statistic (NBS) analysis to elucidate a network that best distinguishes patients from controls. The connections involving the pHTH and ipsiNBM from this network were included in age-corrected pairwise region of interest (ROI) analysis, along with connections between arousal structures, including the pHTH, ipsiNBM, and brainstem arousal regions. Finally, patient functional connectivity was correlated with clinical neurocognitive testing scores for IQ as well as attention and concentration tests.

RESULTS: The voxel-wise analysis demonstrated that the pHTH, when compared with the atHTH, showed more widespread functional connectivity decreases in surgical mTLE patients when compared with controls. It was also observed that the ipsiNBM, but not the contraNBM, showed decreased functional connectivity in mTLE. The NBS analysis uncovered a perturbed network of frontoparietal regions, the pHTH, and ipsiNBM that distinguishes patients from controls. Age-corrected ROI analysis revealed functional connectivity decreases between the pHTH and bilateral superior frontal gyri, medial orbitofrontal cortices, rostral anterior cingulate cortices, and inferior parietal cortices in mTLE when compared with controls. For the ipsiNBM, there was reduced connectivity with bilateral medial orbitofrontal and rostral anterior cingulate cortices. Age-corrected ROI analysis also demonstrated upstream connectivity decreases from controls between the pHTH and the brainstem arousal regions, cuneiform/subcuneiform (CSC) nuclei, and ventral tegmental area, as well as the ipsiNBM and CSC nuclei. Reduced functional connectivity was also detected between the pHTH and ipsiNBM. Lastly, neurocognitive test scores for attention and concentration were found to be positively correlated with the functional connectivity between the pHTH and ipsiNBM, suggesting worse performance associated with connectivity perturbations.

CONCLUSIONS: This study demonstrated perturbed resting-state functional connectivity of arousal regions in surgical mTLE and is one of the first investigations to demonstrate decreased functional connectivity of the pHTH with frontoparietal regions and other arousal regions. Connectivity disturbances in arousal regions may contribute to neurocognitive deficits in surgical mTLE patients.

PMID:36807210 | DOI:10.3171/2023.1.JNS221452

Structure/function interrelationships and illness insight in patients with schizophrenia: a multimodal MRI data fusion study

Wed, 02/22/2023 - 11:00

Eur Arch Psychiatry Clin Neurosci. 2023 Feb 20. doi: 10.1007/s00406-023-01566-1. Online ahead of print.


Illness insight in schizophrenia (SZ) has an important impact on treatment outcome, integration into society and can vary over the course of the disorder. To deal with and treat reduced or absent illness insight, we need to better understand its functional and structural correlates. Previous studies showed regionally abnormal brain volume in brain areas related to cognitive control and self-reference. However, little is known about associations between illness insight and structural and functional network strength in patients with SZ. This study employed a cross-sectional design to examine structural and functional differences between patients with SZ (n = 74) and healthy controls (n = 47) using structural and resting-state functional magnetic resonance imaging (MRI). Voxel-based morphometry was performed on structural data, and the amplitude of low frequency fluctuations (ALFF) was calculated for functional data. To investigate abnormal structure/function interrelationships and their association with illness insight, we used parallel independent component analysis (pICA). Significant group (SZ vs. HC) differences were detected in distinct structural and functional networks, predominantly comprising frontoparietal, temporal and cerebellar regions. Significant associations were found between illness insight and two distinct structural networks comprising frontoparietal (pre- and postcentral gyrus, inferior parietal lobule, thalamus, and precuneus) and posterior cortical regions (cuneus, precuneus, lingual, posterior cingulate, and middle occipital gyrus). Finally, we found a significant relationship between illness insight and functional network comprising temporal regions (superior temporal gyrus). This study suggests that aberrant structural and functional integrity of neural systems subserving cognitive control, memory and self-reference are tightly coupled to illness insight in SZ.

PMID:36806586 | DOI:10.1007/s00406-023-01566-1

A Residual Marker of Cognitive Reserve Is Associated with Resting-State Intrinsic Functional Connectivity Along the Alzheimer's Disease Continuum

Wed, 02/22/2023 - 11:00

J Alzheimers Dis. 2023 Feb 15. doi: 10.3233/JAD-220464. Online ahead of print.


BACKGROUND: Cognitive reserve (CR) explains inter-individual differences in the impact of the neurodegenerative burden on cognitive functioning. A residual model was proposed to estimate CR more accurately than previous measures. However, associations between residual CR markers (CRM) and functional connectivity (FC) remain unexplored.

OBJECTIVE: To explore the associations between the CRM and intrinsic network connectivity (INC) in resting-state networks along the neuropathological-continuum of Alzheimer's disease (ADN).

METHODS: Three hundred eighteen participants from the DELCODE cohort were stratified using cerebrospinal fluid biomarkers according to the A(myloid-β)/T(au)/N(eurodegeneration) classification. CRM was calculated utilizing residuals obtained from a multilinear regression model predicting cognition from markers of disease burden. Using an independent component analysis in resting-state fMRI data, we measured INC of resting-state networks, i.e., default mode network (DMN), frontoparietal network (FPN), salience network (SAL), and dorsal attention network. The associations of INC with a composite memory score and CRM and the associations of CRM with the seed-to-voxel functional connectivity of memory-related were tested in general linear models.

RESULTS: CRM was positively associated with INC in the DMN in the entire cohort. The A+T+N+ group revealed an anti-correlation between the SAL and the DMN. Furthermore, CRM was positively associated with anti-correlation between memory-related regions in FPN and DMN in ADN and A+T/N+.

CONCLUSION: Our results provide evidence that INC is associated with CRM in ADN defined as participants with amyloid pathology with or without cognitive symptoms, suggesting that the neural correlates of CR are mirrored in network FC in resting-state.

PMID:36806502 | DOI:10.3233/JAD-220464

Frequency-specific brain network architecture in resting-state fMRI

Wed, 02/22/2023 - 11:00

Sci Rep. 2023 Feb 20;13(1):2964. doi: 10.1038/s41598-023-29321-5.


The analysis of brain function in resting-state network (RSN) models, ascertained through the functional connectivity pattern of resting-state functional magnetic resonance imaging (rs-fMRI), is sufficiently powerful for studying large-scale functional integration of the brain. However, in RSN-based research, the network architecture has been regarded as the same through different frequency bands. Thus, here, we aimed to examined whether the network architecture changes with frequency. The blood oxygen level-dependent (BOLD) signal was decomposed into four frequency bands-ranging from 0.007 to 0.438 Hz-and the clustering algorithm was applied to each of them. The best clustering number was selected for each frequency band based on the overlap ratio with task activation maps. The results demonstrated that resting-state BOLD signals exhibited frequency-specific network architecture; that is, the networks finely subdivided in the lower frequency bands were integrated into fewer networks in higher frequency bands rather than reconfigured, and the default mode network and networks related to perception had sufficiently strong architecture to survive in an environment with a lower signal-to-noise ratio. These findings provide a novel framework to enable improved understanding of brain function through the multiband frequency analysis of ultra-slow rs-fMRI data.

PMID:36806195 | DOI:10.1038/s41598-023-29321-5

Time varying dynamics of hallucinations in clinical and non-clinical voice-hearers

Wed, 02/22/2023 - 11:00

Neuroimage Clin. 2023 Feb 14;37:103351. doi: 10.1016/j.nicl.2023.103351. Online ahead of print.


Auditory verbal hallucinations (AVH) are frequently associated with psychotic disorders, yet also occur in non-clinical voice-hearers. AVH in this group are similar to those within clinical voice-hearers in terms of several phenomenological aspects, but non-clinical voice-hearers report to have more control over their AVH and attribute less emotional valence to them. These dissimilarities may stem from differences on the neurobiological level, as it is still under debate whether the mechanisms involved in AVH are the same in clinical and non-clinical voice-hearers. In this study, 21 clinical and 21 non-clinical voice-hearers indicated the onset and offsets of AVH during an fMRI scan. Using a method called leading eigenvector dynamics analysis (LEiDA), we examined time-varying dynamics of functional connectivity involved in AVH with a sub-second temporal resolution. We assessed differences between groups, and between hallucination and rest periods in dwell time, switching frequency, probability of occurrence, and transition probabilities of nine recurrent states of functional connectivity with a permutation ANOVA. Deviations in dwell times, switching frequencies, and switch probabilities in the hallucination period indicated more erratic dynamics during this condition regardless of their clinical status. Post-hoc analyses of the dwell times exhibited the most distinct differences between the rest and hallucination condition for the non-clinical sample, suggesting stronger differences between the two conditions in this group. Overall, these findings suggest that the neurobiological mechanisms involved in AVH are similar in clinical and non-clinical individuals.

PMID:36805417 | DOI:10.1016/j.nicl.2023.103351

EEG Beta functional connectivity decrease in the left amygdala correlates with the affective pain in fibromyalgia: A pilot study

Tue, 02/21/2023 - 11:00

PLoS One. 2023 Feb 21;18(2):e0281986. doi: 10.1371/journal.pone.0281986. eCollection 2023.


Fibromyalgia (FM) is a major chronic pain disease with prominent affective disturbances, and pain-associated changes in neurotransmitters activity and in brain connectivity. However, correlates of affective pain dimension lack. The primary goal of this correlational cross-sectional case-control pilot study was to find electrophysiological correlates of the affective pain component in FM. We examined the resting-state EEG spectral power and imaginary coherence in the beta (β) band (supposedly indexing the GABAergic neurotransmission) in 16 female patients with FM and 11 age-adjusted female controls. FM patients displayed lower functional connectivity in the High β (Hβ, 20-30 Hz) sub-band than controls (p = 0.039) in the left basolateral complex of the amygdala (p = 0.039) within the left mesiotemporal area, in particular, in correlation with a higher affective pain component level (r = 0.50, p = 0.049). Patients showed higher Low β (Lβ, 13-20 Hz) relative power than controls in the left prefrontal cortex (p = 0.001), correlated with ongoing pain intensity (r = 0.54, p = 0.032). For the first time, GABA-related connectivity changes correlated with the affective pain component are shown in the amygdala, a region highly involved in the affective regulation of pain. The β power increase in the prefrontal cortex could be compensatory to pain-related GABAergic dysfunction.

PMID:36802404 | PMC:PMC9943002 | DOI:10.1371/journal.pone.0281986

Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders

Tue, 02/21/2023 - 11:00

Biol Psychiatry. 2022 Dec 5:S0006-3223(22)01799-1. doi: 10.1016/j.biopsych.2022.11.019. Online ahead of print.


Adverse intrauterine events may profoundly impact fetal risk for future adult diseases. The mechanisms underlying this increased vulnerability are complex and remain poorly understood. Contemporary advances in fetal magnetic resonance imaging (MRI) have provided clinicians and scientists with unprecedented access to in vivo human fetal brain development to begin to identify emerging endophenotypes of neuropsychiatric disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder, and schizophrenia. In this review, we discuss salient findings of normal fetal neurodevelopment from studies using advanced, multimodal MRI that have provided unparalleled characterization of in utero prenatal brain morphology, metabolism, microstructure, and functional connectivity. We appraise the clinical utility of these normative data in identifying high-risk fetuses before birth. We highlight available studies that have investigated the predictive validity of advanced prenatal brain MRI findings and long-term neurodevelopmental outcomes. We then discuss how ex utero quantitative MRI findings can inform in utero investigations toward the pursuit of early biomarkers of risk. Lastly, we explore future opportunities to advance our understanding of the prenatal origins of neuropsychiatric disorders using precision fetal imaging.

PMID:36804195 | DOI:10.1016/j.biopsych.2022.11.019

Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI

Tue, 02/21/2023 - 11:00

J Cereb Blood Flow Metab. 2023 Feb 21:271678X231158434. doi: 10.1177/0271678X231158434. Online ahead of print.


Despite extensive efforts to identify interhemispheric functional connectivity (FC) with resting-state (rs-) fMRI, correlated low-frequency rs-fMRI signal fluctuation across homotopic cortices originates from multiple sources. It remains challenging to differentiate circuit-specific FC from global regulation. Here, we developed a bilateral line-scanning fMRI method to detect laminar-specific rs-fMRI signals from homologous forepaw somatosensory cortices with high spatial and temporal resolution in rat brains. Based on spectral coherence analysis, two distinct bilateral fluctuation spectral features were identified: ultra-slow fluctuation (<0.04 Hz) across all cortical laminae versus Layer (L) 2/3-specific evoked BOLD at 0.05 Hz based on 4 s on/16 s off block design and resting-state fluctuations at 0.08-0.1 Hz. Based on the measurements of evoked BOLD signal at corpus callosum (CC), this L2/3-specific 0.05 Hz signal is likely associated with neuronal circuit-specific activity driven by the callosal projection, which dampened ultra-slow oscillation less than 0.04 Hz. Also, the rs-fMRI power variability clustering analysis showed that the appearance of L2/3-specific 0.08-0.1 Hz signal fluctuation is independent of the ultra-slow oscillation across different trials. Thus, distinct laminar-specific bilateral FC patterns at different frequency ranges can be identified by the bilateral line-scanning fMRI method.

PMID:36803280 | DOI:10.1177/0271678X231158434

Altered Spinal Cord Functional Connectivity Associated with Parkinson's Disease Progression

Tue, 02/21/2023 - 11:00

Mov Disord. 2023 Feb 21. doi: 10.1002/mds.29354. Online ahead of print.


BACKGROUND: Parkinson's disease (PD) has traditionally been viewed as an α-synucleinopathy brain pathology. Yet evidence based on postmortem human and animal experimental models indicates that the spinal cord may also be affected.

OBJECTIVE: Functional magnetic resonance imaging (fMRI) seems to be a promising candidate to better characterize spinal cord functional organization in PD patients.

METHODS: Resting-state spinal fMRI was performed in 70 PD patients and 24 age-matched healthy controls, the patients being divided into three groups based on their motor symptom severity: PDlow (n = 24), PDmed (n = 22), and PDadv (n = 24) groups. A combination of independent component analysis (ICA) and a seed-based approach was applied.

RESULTS: When pooling all participants, the ICA revealed distinct ventral and dorsal components distributed along the rostro-caudal axis. This organization was highly reproducible within subgroups of patients and controls. PD severity, assessed by Unified Parkinson's Disease Rating Scale (UPDRS) scores, was associated with a decrease in spinal functional connectivity (FC). Notably, we observed a reduced intersegmental correlation in PD as compared to controls, the latter being negatively associated with patients' upper-limb UPDRS scores (P = 0.0085). This negative association between FC and upper-limb UPDRS scores was significant between adjacent C4-C5 (P = 0.015) and C5-C6 (P = 0.20) cervical segments, levels associated with upper-limb functions.

CONCLUSIONS: The present study provides the first evidence of spinal cord FC changes in PD and opens new avenues for the effective diagnosis and therapeutic strategies in PD. This underscores how spinal cord fMRI can serve as a powerful tool to characterize, in vivo, spinal circuits for a variety of neurological diseases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

PMID:36802374 | DOI:10.1002/mds.29354

Abnormal brain network community structure related to psychological stress in schizophrenia

Tue, 02/21/2023 - 11:00

Schizophr Res. 2023 Feb 15;254:42-53. doi: 10.1016/j.schres.2023.02.007. Online ahead of print.


Recent functional imaging studies in schizophrenia consistently report a disruption of brain connectivity. However, most of these studies analyze the brain connectivity during resting state. Since psychological stress is a major factor for the emergence of psychotic symptoms, we sought to characterize the brain connectivity reconfiguration induced by stress in schizophrenia. We tested the hypothesis that an alteration of the brain's integration-segregation dynamic could be the result of patients with schizophrenia facing psychological stress. To this end, we studied the modular organization and the reconfiguration of networks induced by a stress paradigm in forty subjects (twenty patients and twenty controls), thus analyzing the dynamics of the brain in terms of integration and segregation processes by using 3T-fMRI. Patients with schizophrenia did not show statistically significant differences during the control task compared with controls, but they showed an abnormal community structure during stress condition and an under-connected reconfiguration network with a reduction of hub nodes, suggesting a deficit of integration dynamic with a greater compromise of the right hemisphere. These results provide evidence that schizophrenia has a normal response to undemanding stimuli but shows a disruption of brain functional connectivity between key regions involved in stress response, potentially leading to altered functional brain dynamics by reducing integration capacity and showing deficits recruiting right hemisphere regions. This could in turn underlie the hyper-sensitivity to stress characteristic of schizophrenia.

PMID:36801513 | DOI:10.1016/j.schres.2023.02.007

Information flow and dynamic functional connectivity during electroconvulsive therapy in patients with depression

Tue, 02/21/2023 - 11:00

J Affect Disord. 2023 Feb 17:S0165-0327(23)00222-7. doi: 10.1016/j.jad.2023.02.060. Online ahead of print.


BACKGROUND: Electroconvulsive therapy is effectively used for treatment-resistant depression; however, its neural mechanism is largely unknown. Resting-state functional magnetic resonance imaging is promising for monitoring outcomes of electroconvulsive therapy for depression. This study aimed to explore the imaging correlates of the electroconvulsive therapy effects on depression using Granger causality analysis and dynamic functional connectivity analyses.

METHODS: We performed advanced analyses of resting-state functional magnetic resonance imaging data at the beginning and intermediate stages and end of the therapeutic course to identify neural markers that reflect or predict the therapeutic effects of electroconvulsive therapy on depression.

RESULTS: We demonstrated that information flow between the functional networks analyzed by Granger causality changes during electroconvulsive therapy, and this change was correlated with the therapeutic outcome. Information flow and the dwell time (an index reflecting the temporal stability of functional connectivity) before electroconvulsive therapy are correlated with depressive symptoms during and after treatment.

LIMITATIONS: First, the sample size was small. A larger group is needed to confirm our findings. Second, the influence of concomitant pharmacotherapy on our results was not fully addressed, although we expected it to be minimal because only minor changes in pharmacotherapy occurred during electroconvulsive therapy. Third, different scanners were used the groups, although the acquisition parameters were the same; a direct comparison between patient and healthy participant data was not possible. Thus, we presented the data of the healthy participants separately from that of the patients as a reference.

CONCLUSIONS: These results show the specific properties of functional brain connectivity.

PMID:36801417 | DOI:10.1016/j.jad.2023.02.060

Identification of overlapping and interacting networks reveals intrinsic spatiotemporal organization of the human brain

Tue, 02/21/2023 - 11:00

Neuroimage. 2023 Feb 16:119944. doi: 10.1016/j.neuroimage.2023.119944. Online ahead of print.


The human brain is a complex network that exhibits dynamic fluctuations in activity across space and time. Depending on the analysis method, canonical brain networks identified from resting-state fMRI (rs-fMRI) are typically constrained to be either orthogonal or statistically independent in their spatial and/or temporal domains. We avoid imposing these potentially unnatural constraints through the combination of a temporal synchronization process ("BrainSync") and a three-way tensor decomposition method ("NASCAR") to jointly analyze rs-fMRI data from multiple subjects. The resulting set of interacting networks comprises minimally constrained spatiotemporal distributions, each representing one component of functionally coherent activity across the brain. We show that these networks can be clustered into six distinct functional categories and naturally form a representative functional network atlas for a healthy population. This functional network atlas could help explore group and individual differences in neurocognitive function, as we demonstrate in the context of ADHD and IQ prediction.

PMID:36801371 | DOI:10.1016/j.neuroimage.2023.119944

Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity

Tue, 02/21/2023 - 11:00

Neuroimage. 2023 Feb 16:119946. doi: 10.1016/j.neuroimage.2023.119946. Online ahead of print.


Characterizing the optimal fMRI paradigms for detecting behaviorally relevant functional connectivity (FC) patterns is a critical step to furthering our knowledge of the neural basis of behavior. Previous studies suggested that FC patterns derived from task fMRI paradigms, which we refer to as task-based FC, are better correlated with individual differences in behavior than resting-state FC, but the consistency and generalizability of this advantage across task conditions was not fully explored. Using data from resting-state fMRI and three fMRI tasks from the Adolescent Brain Cognitive Development Study ® (ABCD), we tested whether the observed improvement in behavioral prediction power of task-based FC can be attributed to changes in brain activity induced by the task design. We decomposed the task fMRI time course of each task into the task model fit (the fitted time course of the task condition regressors from the single-subject general linear model) and the task model residuals, calculated their respective FC, and compared the behavioral prediction performance of these FC estimates to resting-state FC and the original task-based FC. The FC of the task model fit was better than the FC of the task model residual and resting-state FC at predicting a measure of general cognitive ability or two measures of performance on the fMRI tasks. The superior behavioral prediction performance of the FC of the task model fit was content-specific insofar as it was only observed for fMRI tasks that probed similar cognitive constructs to the predicted behavior of interest. To our surprise, the task model parameters, the beta estimates of the task condition regressors, were equally if not more predictive of behavioral differences than all FC measures. These results showed that the observed improvement of behavioral prediction afforded by task-based FC was largely driven by the FC patterns associated with the task design. Together with previous studies, our findings highlighted the importance of task design in eliciting behaviorally meaningful brain activation and FC patterns.

PMID:36801369 | DOI:10.1016/j.neuroimage.2023.119946