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ABSTRACT 

Brain imaging efforts are being increasingly devoted to decode the functioning of the 

human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently 

expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., 

SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need 

of user-friendly toolboxes for R-fMRI data processing. To address recently identified 

methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, 

which was evolved from REST and DPARSF. DPABI incorporates recent research 

advances on head motion control and measurement standardization, thus allowing users 

to evaluate results using stringent control strategies. DPABI also emphasizes test-retest 

reliability and quality control of data processing. Furthermore, DPABI provides a 

user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the 

rapid advances in animal imaging. In addition, DPABI includes preprocessing modules 

for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results 

viewing. DPABI is designed to make data analysis require fewer manual operations, be 

less time-consuming, have a lower skill requirement, a smaller risk of inadvertent 

mistakes, and be more comparable across studies. We anticipate this open-source 

toolbox will assist novices and expert users alike and continue to support advancing 

R-fMRI methodology and its application to clinical translational studies. 

Keywords: data processing; quality control; resting-state fMRI; standardization; 

statistical analysis 
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1. Introduction 

Human brain function, as implemented by one of the most complex systems in the 

universe, is fascinating to decode. Brain imaging has advanced our progress in such 

efforts during recent decades. Among neuroimaging techniques, magnetic resonance 

imaging (MRI), especially functional MRI (fMRI), dominates because of its 

non-invasiveness, whole-brain coverage and wide availability (Bandettini, 2012). By 

detecting local concentrations of deoxygenated and oxygenated hemoglobin, fMRI 

blood-oxygen level dependent (BOLD) signals allow inferring blood flow changes 

associated with differential neural activity during distinct tasks (Huettel et al., 2004). 

Unlike task-based fMRI requiring specific tasks tailored to each cognitive experiment 

design, resting-state fMRI (R-fMRI) focuses on spontaneous brain activity without 

requiring subjects to perform explicit cognitive tasks, other than remaining extremely still 

or ‘resting’ in the scanner (Biswal et al., 1995). R-fMRI has become increasingly popular 

(Buckner et al., 2013; Fox and Raichle, 2007; Kelly et al., 2012) because of its substantial 

reliability (Shehzad et al., 2009; Zuo and Xing, 2014), sensitivity (Castellanos et al., 2013; 

Fox and Greicius, 2010; Greicius, 2008) and comparability across labs 

(ADHD-200-Consortium, 2012; Biswal et al., 2010; Di Martino et al., 2014; Mennes et al., 

2013). The R-fMRI field has been expanding exponentially, with more than 1,000 studies 

now being published per year (Birn, 2012; Yan et al., 2014; Zuo and Xing, 2014). 

 

As the R-fMRI field has grown, there is an increasing need for user-friendly toolboxes for 
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R-fMRI data processing that go beyond manually integrating functions in general analysis 

packages such as Statistical Parametric Mapping (SPM) (Ashburner, 2012), FMRIB 

Software Library (FSL) (Jenkinson et al., 2012), or Analysis of Functional NeuroImages 

(AFNI) (Cox, 2012). Song and colleagues developed a toolbox named Resting-State 

fMRI Data Analysis Toolkit (REST) (Song et al., 2011) to calculate common R-fMRI 

derivatives. Based on SPM and REST functions, a MATLAB toolbox for “pipeline” data 

analysis of R-fMRI data, DPARSF was also developed (Yan and Zang, 2010). The 

DPARSF analysis pipeline automated and overcame time-consuming manual procedures 

in preprocessing R-fMRI data and generating R-fMRI derivatives, e.g., functional 

connectivity (Biswal et al., 1995), regional homogeneity (ReHo) (Zang et al., 2004), 

amplitude of low frequency fluctuations (ALFF) (Zang et al., 2007), fractional ALFF 

(fALFF) (Zou et al., 2008), voxel-mirrored homotopic connectivity (VMHC) (Zuo et al., 

2010b) and degree centrality (Buckner et al., 2009). This user-friendly toolbox made 

R-fMRI analysis easily accessible to a broader community, as attested by its having been 

cited more than 600 times per Google Scholar. Although DPARSF has been widely used 

(including more recent R-fMRI pipelines CONN (Whitfield-Gabrieli and Nieto-Castanon, 

2012) and FATCAT (Taylor and Saad, 2013)), the original DPARSF has fallen behind 

with some recent developments of R-fMRI methodologies, particularly in relation to 

R-fMRI methodological challenges. 

 

For example, head motion is a formidable challenge for R-fMRI, as recent work 
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conclusively demonstrated that even head micro-movements could introduce artifactual 

inter-individual differences in R-fMRI metrics (Power et al., 2012a, b; Satterthwaite et al., 

2012; Van Dijk et al., 2012). Several studies (Fair et al., 2012; Power et al., 2014; 

Satterthwaite et al., 2013; Yan et al., 2013a) provided comprehensive assessments of 

motion-related artifacts and suggested procedures for controlling them, including 

higher-order regression models (e.g., Friston 24-parameter model (Friston et al., 1996)) 

and motion scrubbing approaches at the individual-subject level (Power et al., 2012a), as 

well as accounting for head motion at the group-level (i.e., covariate analysis). Such 

strategies need to be seamlessly integrated into an easy-to-use R-fMRI pipeline toolbox. 

See a comprehensive review on recent advances regarding this topic in Power et al. 

(2015). 

 

Measurement standardization represents another key challenge for R-fMRI. Concerns 

about the many sources of nuisance variation impacting on R-fMRI measures continue to 

grow (Cole et al., 2010; Kelly et al., 2012). A recent study compared an array of 

standardization approaches and found group-level post-hoc standardizations for 

mean-regression and variance-standardization were advantageous for avoiding the 

introduction of artifactual relationships with standardization parameters (Yan et al., 

2013b). To better generalize such standardization to minimize the influence of nuisance 

variables in future studies, a user-friendly module for standardizing R-fMRI indices is 

warranted. Furthermore, to yield valid results, R-fMRI measures must have adequate 
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test-retest (TRT) reliability (Shehzad et al., 2009; Zuo et al., 2010a; Zuo and Xing, 2014). 

A module for assessing TRT reliability is also needed to facilitate investigating effects of 

inter-individual differences on R-fMRI measures. 

 

With all the methodological improvements being incorporated into R-fMRI, adequate 

quality control (QC) is essential for establishing reliable results. For most advanced MRI 

centers, regular quality assurance protocols ensuring scanner performance stability are 

performed daily (Friedman and Glover, 2006; Ihalainen et al., 2004; Simmons et al., 

1999). Even when the quality of fMRI acquisition is monitored, quality control of data 

processing needs to be considered. The quality of raw structural and functional images, 

as well as the effects of registration to standard templates must be checked. 

Furthermore, spatial coverage of functional images and head motion during scanning 

should be considered in the quality control steps. Manual data checking is extremely time 

consuming, which sometimes prevents investigators from checking each subject’s data. 

Thus, an integrated and efficient quality control module for data processing would be 

essential for ensuring the reliability of R-fMRI study findings. 

 

Most R-fMRI studies are performed on humans. However, as the physiology underlying 

fMRI effects remains largely unknown, R-fMRI studies with animal models are critical 

(Hutchison and Everling, 2012). Animal work, including rodents and non-human primates, 
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allows neurophysiological recordings and pharmacological/behavior manipulations, 

which may not be ethical or practical in humans. There exist structural image analysis 

pipelines for animals; for example, SPMMouse facilitates voxel-based morphometry 

analysis for mouse data (Sawiak et al., 2009). However, there is no user-friendly R-fMRI 

analysis pipeline designed for animal data to date.   

    

To meet these demands, we developed a toolbox named DPABI (for Data Processing & 

Analysis of Brain Imaging (Figure 1), which evolved from DPARSF and REST. DPABI 

includes an advanced edition of DPARSF, which integrates the latest algorithms to 

control for head motion, as well as standardization, TRT reliability, quality control 

modules and rat/monkey data analysis pipelines. DPABI works with other imaging 

modalities, including preprocessing modules for task-based fMRI and for voxel-based 

morphometry analysis, as well as modules for statistical analysis. DPABI also includes a 

MRI viewer. 

 

2. Implementation 

DPABI was developed in MATLAB (The MathWorks Inc., Natick, MA, US). It is an 

open-source package (source code available at http://rfmri.org/DPABI) evolved from 

DPARSF and REST. It supports Windows, MacOS and Linux operating systems. Here, 

we introduce the implementation of its key features.  
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2.1. Advanced DPARSF 

The implementation of DPARSF V1.0 (basic edition) was previously described (Yan and 

Zang, 2010). The updated edition of DPARSF has been integrated into DPABI as a key 

module. Here we present the updated functions in the most recent edition (V3.2) as 

follows.  

 

In addressing head motion concerns in R-fMRI analyses (Power et al., 2012a, b; 

Satterthwaite et al., 2012; Van Dijk et al., 2012), DPARSF V3.2 provides Friston 

24-parameter motion correction (Satterthwaite et al., 2013; Yan et al., 2013a), i.e., 

regression with autoregressive models of motion incorporating 6 head motion parameters, 

6 head motion parameters one time point before, and the 12 corresponding squared 

items (Friston et al., 1996). DPARSF V3.2 also provides voxel-specific head motion 

calculation and correction at the individual level (Satterthwaite et al., 2013; Yan et al., 

2013a). Data scrubbing was implemented in multiple ways: 1) model each bad time point 

as a separate regressor in nuisance covariates regression, 2) delete bad time points, and 

3) interpolate bad time points with nearest neighbor, linear or cubic spline 

interpolation. The voxel-specific mean framewise displacement (FD) and volume-level 

mean FD are calculated for accounting for head motion in group-level analyses.  

 

In addition to head motion correction, DPARSF V3.2 also provides regression of other 



 9 

nuisance variables, including white matter (WM) and cerebrospinal fluid (CSF) signal 

regression. Other than mean signal regression, the CompCor method (Behzadi et al., 

2007), which was reported to be advantageous (Chai et al., 2012), is integrated. This 

extracts the first 5 principal components from a combined WM/CSF mask. 

 

Additionally, DPARSF V3.2 can distribute the processing of multi-subject datasets to 

different CPU cores with the MATLAB parallel computing toolbox. It supports defining 

regions of interests interactively based on a participant's T1 image in native space. It 

resamples the mask files automatically if the dimensions mismatch those of the functional 

images. Before co-registration of structural images and functional images, skull strip can 

be performed on each modality to improve the accuracy of registration. 

 

2.2. Standardization module 

To reduce the impact of many sources of nuisance variation impacting on R-fMRI 

measures, we have provided several post-hoc standardization approaches in the 

standardization module.  

1) Mean Regression: calculate the mean across all brain voxels for a given R-fMRI 

measure of each participant and then regress out the mean at the group-level. 

2) Mean Regression + SD Division: calculate the mean and standard deviation across 

brain voxels for each participant, and then regress out the mean at the group-level. 

The residual value at each voxel is divided by the standard deviation. 
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3) Mean Regression + log SD Regression: a mean regression + log SD regression 

model was employed to accurately address both additive and multiplicative noise in a 

two-step regression model. Please see Yan et al. (2013b) for more details. 

4) Z-standardization: calculate the mean and standard deviation across brain voxels for 

a given R-fMRI measure, then subtract the mean from the value at each voxel and 

divide the value at each voxel by the standard deviation.  

5) Mean Division: calculate the mean across brain voxels for a given R-fMRI measure 

and divide the value at each voxel by the mean.  

6) Mean Subtraction: calculate the mean across brain voxels for a given R-fMRI 

measure and then subtract the mean from the value at each voxel. 

7) Median - inter-quartile range standardization: calculate the median and the range 

between 25% - 75% percentile (interquartile range), then subtract the median from 

the value at each voxel and divide the value at each voxel by the interquartile range. 

8) Rank standardization: each voxel is ranked according to its value within the brain, and 

the rank value is assigned to each voxel. 

9) Quantile standardization: each voxel is ranked according to value for each participant, 

and then the average value across participants of each rank is computed. The voxel 

with the same rank for each participant is assigned that average value. 

10) Gaussian function fit normalization. First fit a Gaussian function with parameters of 

mean, standard deviation, and area to the distribution of values (restricted to full width 

at half maximum), then subtract the estimated mean from the value at each voxel and 
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divide the value at each voxel by the estimated standard deviation (Lowe et al., 

1998). 

 

2.3. Test-retest Reliability 

Before using R-fMRI measures to test inter-individual differences, TRT reliability should 

be assessed (Shehzad et al., 2009; Zuo et al., 2010a; Zuo and Xing, 2014). The TRT 

reliability module supports voxel-wise intra-class correlation (ICC) calculation with either 

ANOVA or linear mixed models. 

 

1) ANOVA model: 

!"" = !!"! −!"!!"! +!"!
 

Where MSb is the between-subject mean square and MSw is the within-subject mean 

square for each index (Shrout and Fleiss, 1979).  

2) Linear mixed model 

As described in Zuo et al., (2011; 2013), the two-level linear mixed model was applied to 

the decomposition of Yij (the value of the j-th participant’s i-th measurement occasion):   

!!" = !!! + !!" , !!! = !!!! + !!!!  

where !!!!  is a fixed parameter and !!!  and !!"  are independent random effects 

normally distributed with mean 0 and variances !!!!  and !!! . The term !!!  is the 

participant effect and !!" !is the measurement error. The ICC was defined as 
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!"" = !!!! !
!!!! + !!!!

 

The variance terms were estimated with the restricted maximum likelihood (ReML) 

approach. 

 

2.4. Quality control 

To facilitate quality control, DPABI includes the following QC steps (Figure 2). 

1) QC for raw functional and structural images. 

During preprocessing, there is a step for reorienting functional images and T1 images 

interactively. This step can help improve the accuracy of coregistration, segmentation 

and normalization, especially when the image’s initial orientation is substantially 

inconsistent with a standard template. At the same time, it’s an important QC step. DPABI 

pops up the related images for each subject automatically, allowing users to rate the 

quality of the structural and functional images and comment. For example, images with 

large distortions, head motion, drop out, ghosting, or structural abnormality can be 

screened. The scores and comments are used for thresholding the quality of the raw 

functional and structural images. 

 

2) QC for spatial normalization. 

To make comparisons between subjects feasible, the individual brain is spatially 

coregistered (normalized) to standardized space. Ensuring adequate effects of 

normalization of each individual is important for drawing reliable conclusions. The DPABI 
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QC module provides a convenient and efficient way to visually inspect coregistration. As 

demonstrated in Figure 3, four yoked windows with normalized structural image, 

functional image, gray matter (GM) segmentation and a MNI template pop up. On top of 

each image, the GM/WM boundary is overlaid to better check the spatial normalization 

effect. The QC scores and comments can be stored through the rating window for later 

thresholding. 

 

3) QC for spatial coverage and group mask generation. 

Due to the limitation of how many slices can be included in functional scans and the 

variability in head size and shape (e.g., echo-planar imaging (EPI)), the spatial coverage 

of EPI raw images varies. The regions not covered in some subjects may produce 

spurious findings due to coverage differences. DPABI generates a coverage mask with a 

program equivalent to AFNI’s 3dAutomask. Group masks could be generated including 

voxels, which are present in a minimum percentage (e.g., 95%) of participants. Subjects 

who overlap with the group mask less than a certain amount (e.g., 2*SD under the group 

mean overlap) can be excluded. 

 

4) QC for head motion. 

Beyond the head motion correction strategies discussed in section 2.1, excluding 

subjects with excessive head motion from statistical analysis is also essential. DPABI 

generates an Excel file including the following head motion metrics for each subject: max 
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(or mean) absolute translations and rotations, mean RMS, mean FD Van Dijk (Van Dijk et 

al., 2012), mean FD Jenkinson (Jenkinson et al., 2002), mean FD Power (Power et al., 

2012a), number of time points with mean FD Power > 0.5 (or 0.2), percentage of time 

points with mean FD Power > 0.5 (or 0.2). DPABI can pop up the head motion time 

course for each subject, and could threshold subjects according to their motion metrics. 

These quality control steps allow users to select those subjects with good quality and 

generate a subject list for statistical analysis. 

 

2.5. Animal modules 

To facilitate R-fMRI research on animal models, DPABI includes a module for macaque 

monkeys and a module for rats.  

 

For monkey data processing, most of the steps are similar as for humans, except for 

spatial normalization. The individual monkey structural image is coregistered to the 

functional image. Then, using the monkey prior tissue probability maps generated by 

McLaren et al. (2009), the transformed structural image is segmented into GM, WM and 

CSF through unified segmentation (Ashburner and Friston, 2005). The functional 

volumes are normalized to the 112RM-SL space using the normalization parameters 

estimated during unified segmentation (McLaren et al., 2010; McLaren et al., 2009). The 

remaining steps follow the human processing pipeline. 
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For rat data processing, the voxel size of the rat structural and functional images is 

usually too small for the standard neuroimaging software packages, which were designed 

for human imaging. Thus, DPABI offers a function (Voxel Size Augmentor) to augment 

(usually 10 times) the voxel size. A rat T2 template (Schwarz et al., 2006) is used for 

spatial normalization.    

 

2.6. Other Utilities 

DPABI provides a preprocessing pipeline for task-based fMRI, including DICOM to NIfTI, 

slice timing, realignment, nuisance regression, spatial normalization, and smoothing. In 

addition, it also supports VBM analysis including segment structural images into GM, WM 

and CSF (Ashburner and Friston, 2005) and then uses the Diffeomorphic Anatomical 

Registration Through Exponentiated Lie algebra (DARTEL) tool (Ashburner, 2007) to 

compute transformations from individual native space to MNI space.  

 

DPABI also offers a statistical analysis module supporting common statistical models. 

Furthermore, it estimates smoothness based on 4D residuals and writes to the NIfTI 

headers. The smoothness is used for Gaussian random field (GRF) theory correction for 

multiple comparisons or Monte Carlo simulation (AlphaSim), as only using smooth 

kernels in preprocessing is not sufficient. Beyond multiple comparison corrections over 

voxels, DPABI offers a module to perform post-hoc comparison correction over group 

pairs after ANOVA analysis. Most neuroimaging studies perform pairwise two-sample t 
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tests after ANOVA analysis, which provides no protection against multiple comparisons 

over group pairs. In DPABI, we introduced post-hoc procedures including Tukey-Kramer 

(honestly significant difference), Bonferroni, Dunn-Sidak and Scheffe control procedures. 

The corrected p values under a given control procedure for comparing group means of 

any pairs were calculated (e.g., through Studentized Range statistic for Tukey-Kramer 

correction) with the same route as MATLAB command multcompare 

(http://www.mathworks.com/help/stats/multcompare.html). The p maps were then 

converted to Z maps according to the Normal inverse cumulative distribution function 

(norminv), with the sign of group mean differences applied. Using the Z maps, users can 

correct the significant voxels from ANOVA for multiple comparisons. To the best of our 

knowledge, this is the first neuroimaging package that offers post-hoc control procedures 

over multiple group pairs.    

 

Finally, the results can be viewed in the DPABI viewer (based on spm’s function 

spm_orthviews). DPABI Viewer allows displaying multiple images in different layers, as 

well as creating region of interest masks based on atlases or statistical maps. DPABI 

viewer reports the structure names of clusters and generates reports based on XjView 

(by Xu Cui, http://www.alivelearn.net/xjview8/). The viewer also provides an interface to 

the surface displaying tool, BrainNet Viewer (Xia et al., 2013), thus producing a volume 

map and a corresponding surface map with the same color and range settings. 
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In addition, DPABI provides utilities including a T1 Image defacer and multiple image 

averager. DPABI has also adapted the utilities of DICOM sorter, image calculator and 

image reslicer from REST.  

 

3. Illustration 

3.1. Data 

Here we used the publicly available imaging data from the 1000 Functional Connectomes 

Project (all data are available at http://fcon_1000.projects.nitrc.org) to demonstrate the 

functions of DPABI. The primary results were reported in Yan et al. (2013b); here we 

illustrate DPABI usage with re-generated figures. Datasets of 944 subjects from 18 sites, 

including an R-fMRI run and a T1-weighted anatomical image, were used for analyses.  

 

3.2. Preprocessing 

All preprocessing was performed using the advanced DPARSF module V3.2. All volume 

slices were corrected for different signal acquisition times. Then, the time series of 

images for each subject were realigned. Individual structural images (T1-weighted 

MPRAGE) were co-registered to the mean functional image after realignment. The 

transformed structural images were then segmented into GM, WM and CSF (Ashburner 

and Friston, 2005). The DARTEL tool (Ashburner, 2007) was used to compute 

transformations from individual native space to MNI space. To remove the nuisance 

signals, the Friston 24-parameter model (Friston et al., 1996) was utilized to regress out 
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head motion effects from the realigned data. The signals from WM and CSF were 

regressed out to reduce respiratory and cardiac effects. In addition, linear and quadratic 

trends were also included as regressors since the BOLD signal exhibits low-frequency 

drifts. Temporal filtering (0.01 - 0.1 Hz) was then performed on the time series except for 

the frequency-based R-fMRI indices: ALFF and fALFF. 

 

The following R-fMRI-based indices of intrinsic brain function were examined: 1) ALFF 

(Zang et al., 2007) / fALFF (Zou et al., 2008); 2) ReHo (Zang et al., 2004); 3) VMHC 

(Anderson et al., 2011; Zuo et al., 2010b); 4) seed-based correlation analysis of the 

posterior cingulate cortex (PCC: 0, −53, 26; 10mm diameter sphere) (Satterthwaite et al., 

2012; Van Dijk et al., 2012; Yan et al., 2013a); and 5) network degree centrality (Buckner 

et al., 2009; Zuo et al., 2012). A comprehensive review of these rfMRI metrics is provided 

elsewhere (Zuo and Xing, 2014). 

 

3.3. Quality Control 

The quality control module was used to score datasets and exclude those that did not 

meet quality criteria. By rating the raw functional and structural images, as well as their 

normalization effects, using the rating function in DPABI, 49 subjects were excluded, 

leaving 895 subjects to be analyzed. Using the head motion thresholding function, 33 

subjects with motion (Mean FD Jenkinson (Jenkinson et al., 2012)) greater than 2*SD 

above the group mean motion (threshold: 0.192mm) were excluded, resulting in 862 
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subjects. A group mask was generated by including voxels present in at least 90% of 

participants (Figure 4). Finally, 34 subjects with overlap with the group mask less than 

2*SD under the group mean overlap (threshold: 92.2%) were excluded, resulting in 828 

subjects for group analyses. Those 828 subjects passing quality control were forwarded 

to further analysis. 

 

3.4. Standardization 

The standardization module was utilized to standardize the R-fMRI measures to reduce 

the impact of many sources of nuisance variation. Here, two standardization approaches 

were taken as examples. 1) Mean Regression: calculate the global mean for each subject 

and then regress out the mean at the group-level. 2) Mean Regression + SD Division: 

The residual value after mean regression is divided by the standard deviation for each 

subject. 

 

3.5. Test-retest reliability 

The TRT reliability module was used to evaluate the reliability of R-fMRI measures after 

standardization. The NYU TRT dataset, which contains three scans for each subject, was 

used to evaluate the ICC; the first scan (scan 1) was collected 5 – 16 months (mean ± SD 

= 11 ± 4 months) before two subsequent scans (scans 2 and 3), which were collected in a 

single session ~45 minutes apart. We evaluated inter-session reliability as the ICC 

between scan 1 and the average of scans 2 and 3. ICC values were derived by linear 
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mixed models (LMMs) as per Zuo et al. (2013). As demonstrated in Figure 5, ALFF 

without standardization showed very low TRT reliability, which would prevent its usage. 

With standardization, whether with mean regression or mean regression & SD division, 

ALFF showed moderate TRT reliability. All the other measures showed moderate TRT 

reliability, slightly reduced by standardization. The surface maps were produced by 

BrainNet Viewer (Xia et al., 2013), through an interface in the DPABI Viewer.    

 

3.6. Statistical Analysis 

The Statistical Analysis module was used to examine inter-individual differences in 

R-fMRI measures related to age while taking the confounding effects of sex, site and 

mean FD into account. Age effects were estimated by the t-value of the corresponding 

regressor in the general linear model. Gaussian random field theory correction for 

multiple comparisons was applied (voxel Z>2.3, cluster-level p<0.05, corrected) for the 

voxel-wise maps of R-fMRI derivatives. As demonstrated in Figure 6, there were negative 

age associations with unstandardized R-fMRI measures across brain regions except for 

ALFF. After standardization, the distributed negative-relationships were removed; regions 

with remaining positive age effects are shown.  

 

4. Discussion 

Here we described the newly developed toolbox, DPABI, which includes an advanced 

edition of DPARSF (V3.2), modules for head motion control, standardization, TRT 
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reliability, quality control and rat/monkey data analysis pipelines. Processing of other 

imaging modalities, including preprocessing modules for task-based fMRI and 

voxel-based morphometry analysis are included. DPABI also provides modules for 

statistical analysis, an MRI viewer and a series of image utilities. 

 

We illustrated DPABI usage by applying it to a standardization project based on public 

datasets. With the integrated head motion control functions, DPABI makes it 

straightforward to evaluate results using strict motion correction strategies, to minimize 

spurious findings from motion effects. The standardization module minimizes the 

influence of nuisance variables on R-fMRI results. With the TRT reliability module, 

investigators can first test the reliability of their measures before investigating 

inter-individual differences. The quality control module helps users closely inspect their 

data, as adequate quality control is essential for establishing reliable and valid results. 

The statistical analysis module allows users to perform statistical analysis and multiple 

comparison corrections conveniently. Results can be viewed and high quality images 

exported easily using the viewer. Furthermore, the animal processing modules allow 

researchers to conveniently examine pharmacological/behavior manipulation effects and 

explore the underlying physiological mechanism and pathology related changes in 

R-fMRI data through animal studies. 

 

DPABI is designed so that data analysis will require fewer manual operations, be less 
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time-consuming, have a lower skill requirement, smaller possibility of inadvertent 

mistakes, and greater comparability across studies. Given these potential advantages, 

DPABI could set a standard data processing stream for R-fMRI data. If that were to occur, 

having data processed with the same procedure through the same software, should yield 

more comparable results across sites and an increase in their reproducibility (Poldrack 

and Poline, 2015). The next step for DPABI is to create a data-sharing platform, and 

encourage users to share R-fMRI maps processed with DPABI. A large database of 

R-fMRI maps of subjects across various brain disorders could be accumulated through 

such a platform. Making R-fMRI maps available reduces computational demands and 

neuroimaging preprocessing skill requirements, thus allowing researchers from multiple 

disciplines to utilize big data to perform innovative studies. Moreover, such accumulated 

big data furthers the open science agenda to propose and address critical scientific 

questions (Milham, 2012).  

 

In sum, we assert that DPABI is user-friendly, allowing users to process data with a 

graphic user interface (GUI) (command line alternative available), process statistical 

analyses and view the results. We hope this open-source toolbox will assist novices (via 

the user-friendly GUI) and expert users (by efficient command line) and continue to 

support advancing R-fMRI methodology and its application to clinical translational 

studies. 
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Figure Legends 

Fig 1 DPABI’s graphical user interface.  

Fig 2 The quality control user interface. Quality control steps include assessing the 

quality of raw functional and structural images, spatial normalization, coverage and head 

motion. 

Fig 3 Quality control for spatial normalization. Upper left: normalized structural image 

with the standard grey matter/white matter boundary overlaid; upper right: normalized 

functional image; lower left: normalized gray matter segmentation; lower right: MNI 

template; middle: interface for users to give QC scores and comment.  

Fig 4 The group mask generated by including voxels present in at least 90% of 

participants. 

Fig 5 The test-retest reliability (indexed by intra-class correlations) of the R-fMRI 

measures with and without standardization.  

Fig 6 The age effects of R-fMRI measures with and without standardization. Warm colors 

indicate positive correlations with age and cool colors indicate negative correlations with 

age.  
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