New resting-state fMRI related studies at PubMed

Subscribe to New resting-state fMRI related studies at PubMed feed New resting-state fMRI related studies at PubMed
NCBI: db=pubmed; Term=resting state fMRI
Updated: 5 hours 27 min ago

Understanding the neural mechanisms of lisdexamfetamine dimesylate (LDX) pharmacotherapy in Binge Eating Disorder (BED): a study protocol.

Thu, 07/25/2019 - 15:37
Related Articles

Understanding the neural mechanisms of lisdexamfetamine dimesylate (LDX) pharmacotherapy in Binge Eating Disorder (BED): a study protocol.

J Eat Disord. 2019;7:23

Authors: Griffiths KR, Yang J, Touyz SW, Hay PJ, Clarke SD, Korgaonkar MS, Gomes L, Anderson G, Foster S, Kohn MR

Abstract
Background: The efficacy and safety of Lisdexamfetamine dimesylate (LDX) in the treatment of moderate to severe binge eating disorder (BED) has been demonstrated in multiple randomised clinical trials. Despite this, little is known about how LDX acts to improve binge eating symptoms. This study aims to provide a comprehensive understanding of the neural mechanisms by which LDX improves symptoms of BED. We hypothesise that LDX will act by normalising connectivity within neural circuits responsible for reward and impulse control, and that this normalisation will correlate with reduced binge eating episodes.
Methods: This is an open-label Phase 4 clinical trial of LDX in adults with moderate to severe BED. Enrolment will include 40 adults with moderate to severe BED aged 18-40 years and Body Mass Index (BMI) of 20-45 kg/m2, and 22 healthy controls matched for age, gender and BMI. Clinical interview and validated scales are used to confirm diagnosis and screen for exclusion criteria, which include comorbid anorexia nervosa or bulimia nervosa, use of psychostimulants within the past 6 months, and current use of antipsychotics or noradrenaline reuptake inhibitors. Baseline assessments include clinical symptoms, multimodal neuroimaging, cognitive assessment of reward sensitivity and behavioural inhibition, and an (optional) genetic sample. A subset of these assessments are repeated after eight weeks of treatment with LDX titrated to either 50 or 70 mg. The primary outcome measures are resting-state intrinsic connectivity and the number of binge eating episodes. Analyses will be applied to resting-state fMRI data to characterise pharmacological effects across the functional connectome, and assess correlations with symptom measure changes. Comparison of neural measures between controls and those with BED post-treatment will also be performed to determine whether LDX normalises brain function.
Discussion: First enrolment was in May 2018, and is ongoing. This study is the first comprehensive investigation of the neurobiological changes that occur with LDX treatment in adults with moderate to severe BED.
Trial registration: ACTRN12618000623291, Australian and New Zealand Clinical Trials Registry URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374913&isReview=true. Date of Registration: 20 April 2018.

PMID: 31333843 [PubMed]

A Personalized Autism Diagnosis CAD System Using a Fusion of Structural MRI and Resting-State Functional MRI Data.

Thu, 07/25/2019 - 15:37
Related Articles

A Personalized Autism Diagnosis CAD System Using a Fusion of Structural MRI and Resting-State Functional MRI Data.

Front Psychiatry. 2019;10:392

Authors: Dekhil O, Ali M, El-Nakieb Y, Shalaby A, Soliman A, Switala A, Mahmoud A, Ghazal M, Hajjdiab H, Casanova MF, Elmaghraby A, Keynton R, El-Baz A, Barnes G

Abstract
Autism spectrum disorder is a neuro-developmental disorder that affects the social abilities of the patients. Yet, the gold standard of autism diagnosis is the autism diagnostic observation schedule (ADOS). In this study, we are implementing a computer-aided diagnosis system that utilizes structural MRI (sMRI) and resting-state functional MRI (fMRI) to demonstrate that both anatomical abnormalities and functional connectivity abnormalities have high prediction ability of autism. The proposed system studies how the anatomical and functional connectivity metrics provide an overall diagnosis of whether the subject is autistic or not and are correlated with ADOS scores. The system provides a personalized report per subject to show what areas are more affected by autism-related impairment. Our system achieved accuracies of 75% when using fMRI data only, 79% when using sMRI data only, and 81% when fusing both together. Such a system achieves an important next step towards delineating the neurocircuits responsible for the autism diagnosis and hence may provide better options for physicians in devising personalized treatment plans.

PMID: 31333507 [PubMed]

Alterations of Functional Brain Connectivity After Long-Duration Spaceflight as Revealed by fMRI.

Thu, 07/25/2019 - 15:37
Related Articles

Alterations of Functional Brain Connectivity After Long-Duration Spaceflight as Revealed by fMRI.

Front Physiol. 2019;10:761

Authors: Pechenkova E, Nosikova I, Rumshiskaya A, Litvinova L, Rukavishnikov I, Mershina E, Sinitsyn V, Van Ombergen A, Jeurissen B, Jillings S, Laureys S, Sijbers J, Grishin A, Chernikova L, Naumov I, Kornilova L, Wuyts FL, Tomilovskaya E, Kozlovskaya I

Abstract
The present study reports alterations of task-based functional brain connectivity in a group of 11 cosmonauts after a long-duration spaceflight, compared to a healthy control group not involved in the space program. To elicit the postural and locomotor sensorimotor mechanisms that are usually most significantly impaired when space travelers return to Earth, a plantar stimulation paradigm was used in a block design fMRI study. The motor control system activated by the plantar stimulation involved the pre-central and post-central gyri, SMA, SII/operculum, and, to a lesser degree, the insular cortex and cerebellum. While no post-flight alterations were observed in terms of activation, the network-based statistics approach revealed task-specific functional connectivity modifications within a broader set of regions involving the activation sites along with other parts of the sensorimotor neural network and the visual, proprioceptive, and vestibular systems. The most notable findings included a post-flight increase in the stimulation-specific connectivity of the right posterior supramarginal gyrus with the rest of the brain; a strengthening of connections between the left and right insulae; decreased connectivity of the vestibular nuclei, right inferior parietal cortex (BA40) and cerebellum with areas associated with motor, visual, vestibular, and proprioception functions; and decreased coupling of the cerebellum with the visual cortex and the right inferior parietal cortex. The severity of space motion sickness symptoms was found to correlate with a post- to pre-flight difference in connectivity between the right supramarginal gyrus and the left anterior insula. Due to the complex nature and rapid dynamics of adaptation to gravity alterations, the post-flight findings might be attributed to both the long-term microgravity exposure and to the readaptation to Earth's gravity that took place between the landing and post-flight MRI session. Nevertheless, the results have implications for the multisensory reweighting and gravitational motor system theories, generating hypotheses to be tested in future research.

PMID: 31333476 [PubMed]

Baseline Functional Connectivity Features of Neural Network Nodes Can Predict Improvement After Sound Therapy Through Adjusted Narrow Band Noise in Tinnitus Patients.

Thu, 07/25/2019 - 15:37
Related Articles

Baseline Functional Connectivity Features of Neural Network Nodes Can Predict Improvement After Sound Therapy Through Adjusted Narrow Band Noise in Tinnitus Patients.

Front Neurosci. 2019;13:614

Authors: Han L, Na Z, Chunli L, Yuchen C, Pengfei Z, Hao W, Xu C, Peng Z, Zheng W, Zhenghan Y, Shusheng G, Zhenchang W

Abstract
Previous resting-state functional magnetic resonance imaging (fMRI) studies have shown neural connectivity alterations after the treatment of tinnitus. We aim to study the value of the baseline functional connectivity features of neural network nodes to predict outcomes of sound therapy through adjusted narrow band noise. The fMRI data of 27 untreated tinnitus patients and 27 matched healthy controls were analyzed. We calculated the graph-theoretical metric degree centrality (DC) to characterize the functional connectivity of the neural network nodes. Therapeutic outcomes are determined by the changes in the Tinnitus Handicap Inventory (THI) score after a 12-week intervention. The connectivity of 10 brain nodes in tinnitus patients was significantly increased at baseline. The functional connectivity of right insula, inferior parietal lobule (IPL), bilateral thalami, and left middle temporal gyrus was significantly modified with the sound therapy, and such changes correlated with THI changes in tinnitus patients. Receiver operating characteristic curve analyses revealed that the measurements from the five brain regions were effective at classifying improvement after therapy. After age, gender, and education correction, the adjusted area under the curve (AUC) values for the bilateral thalami were the highest (left, 0.745; right, 0.708). Our study further supported the involvement of the fronto-parietal-cingulate network in tinnitus and found that the connectivity of the thalamus at baseline is an object neuroimaging-based indicator to predict clinical outcome of sound therapy through adjusted narrow band noise.

PMID: 31333394 [PubMed]

Graph theory analysis of resting-state functional magnetic resonance imaging in essential tremor.

Thu, 07/25/2019 - 15:37
Related Articles

Graph theory analysis of resting-state functional magnetic resonance imaging in essential tremor.

Hum Brain Mapp. 2019 Jul 22;:

Authors: Benito-León J, Sanz-Morales E, Melero H, Louis ED, Romero JP, Rocon E, Malpica N

Abstract
Essential tremor (ET) is a neurological disease with both motor and nonmotor manifestations; however, little is known about its underlying brain basis. Furthermore, the overall organization of the brain network in ET remains largely unexplored. We investigated the topological properties of brain functional network, derived from resting-state functional magnetic resonance imaging (MRI) data, in 23 ET patients versus 23 healthy controls. Graph theory analysis was used to assess the functional network organization. At the global level, the functional network of ET patients was characterized by lower small-worldness values than healthy controls-less clustered functionality of the brain. At the regional level, compared with the healthy controls, ET patients showed significantly higher values of global efficiency, cost and degree, and a shorter average path length in the left inferior frontal gyrus (pars opercularis), right inferior temporal gyrus (posterior division and temporo-occipital part), right inferior lateral occipital cortex, left paracingulate, bilateral precuneus bilaterally, left lingual gyrus, right hippocampus, left amygdala, nucleus accumbens bilaterally, and left middle temporal gyrus (posterior part). In addition, ET patients showed significant higher local efficiency and clustering coefficient values in frontal medial cortex bilaterally, subcallosal cortex, posterior cingulate cortex, parahippocampal gyri bilaterally (posterior division), right lingual gyrus, right cerebellar flocculus, right postcentral gyrus, right inferior semilunar lobule of cerebellum and culmen of vermis. Finally, the right intracalcarine cortex and the left orbitofrontal cortex showed a shorter average path length in ET patients, while the left frontal operculum and the right planum polare showed a higher betweenness centrality in ET patients. In conclusion, the efficiency of the overall brain functional network in ET is disrupted. Further, our results support the concept that ET is a disorder that disrupts widespread brain regions, including those outside of the brain regions responsible for tremor.

PMID: 31332912 [PubMed - as supplied by publisher]

A multivariate neuroimaging biomarker of individual outcome to transcranial magnetic stimulation in depression.

Thu, 07/25/2019 - 15:37
Related Articles

A multivariate neuroimaging biomarker of individual outcome to transcranial magnetic stimulation in depression.

Hum Brain Mapp. 2019 Jul 22;:

Authors: Cash RFH, Cocchi L, Anderson R, Rogachov A, Kucyi A, Barnett AJ, Zalesky A, Fitzgerald PB

Abstract
The neurobiology of major depressive disorder (MDD) remains incompletely understood, and many individuals fail to respond to standard treatments. Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) has emerged as a promising antidepressant therapy. However, the heterogeneity of response underscores a pressing need for biomarkers of treatment outcome. We acquired resting state functional magnetic resonance imaging (rsfMRI) data in 47 MDD individuals prior to 5-8 weeks of rTMS treatment targeted using the F3 beam approach and in 29 healthy comparison subjects. The caudate, prefrontal cortex, and thalamus showed significantly lower blood oxygenation level-dependent (BOLD) signal power in MDD individuals at baseline. Critically, individuals who responded best to treatment were associated with lower pre-treatment BOLD power in these regions. Additionally, functional connectivity (FC) in the default mode and affective networks was associated with treatment response. We leveraged these findings to train support vector machines (SVMs) to predict individual treatment responses, based on learned patterns of baseline FC, BOLD signal power and clinical features. Treatment response (responder vs. nonresponder) was predicted with 85-95% accuracy. Reduction in symptoms was predicted to within a mean error of ±16% (r = .68, p < .001). These preliminary findings suggest that therapeutic outcome to DLPFC-rTMS could be predicted at a clinically meaningful level using only a small number of core neurobiological features of MDD, warranting prospective testing to ascertain generalizability. This provides a novel, transparent and physiologically plausible multivariate approach for classification of individual response to what has become the most commonly employed rTMS treatment worldwide. This study utilizes data from a larger clinical study (Australian New Zealand Clinical Trials Registry: Investigating Predictors of Response to Transcranial Magnetic Stimulation for the Treatment of Depression; ACTRN12610001071011; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=336262).

PMID: 31332903 [PubMed - as supplied by publisher]

Resting-state functional connectivity in treatment response and resistance in schizophrenia: A systematic review.

Thu, 07/25/2019 - 15:37
Related Articles

Resting-state functional connectivity in treatment response and resistance in schizophrenia: A systematic review.

Schizophr Res. 2019 Jul 19;:

Authors: Chan NK, Kim J, Shah P, Brown EE, Plitman E, Carravaggio F, Iwata Y, Gerretsen P, Graff-Guerrero A

Abstract
BACKGROUND: Treatment-resistant schizophrenia (TRS) and treatment-responsive schizophrenia may exhibit distinct pathophysiology. Several functional magnetic resonance imaging (fMRI) studies have used resting-state functional connectivity analyses (rs-FC) in TRS patients to identify markers of treatment resistance. However, to date, existing findings have not been systematically evaluated.
METHODS: A systematic literature search using Embase, MEDLINE, PsycINFO, ProQuest, PUBMED, and Scopus was performed. The query sought fMRI articles investigating rs-FC in treatment response or resistance in patients with schizophrenia. Only studies that examined treatment response, operationalized as the explicit categorization of patients by their response to antipsychotic medication, were considered eligible. Pairwise comparisons between patient groups and controls were extracted from each study.
RESULTS: The search query identified 159 records. Ten studies met inclusion criteria. Five studies examined not TRS (NTRS), and 8 studies examined TRS. Differences in rs-FC analysis methodology precluded direct comparisons between studies. However, disruptions in areas involved in visual and auditory information processing were implicated in both patients with TRS and NTRS. Changes in connectivity with sensorimotor network areas tended to appear in the context of TRS but not NTRS. Moreover, there was some indication that this connectivity could be affected by clozapine.
CONCLUSIONS: Functional connectivity may provide clinically meaningful biomarkers of treatment response and resistance in schizophrenia. Studies generally identified similar areas of disruption, though methodological differences largely precluded direct comparison between disruption effects. Implementing data sharing as standard practice will allow future reviews and meta-analyses to identify rs-FC correlates of TRS.

PMID: 31331784 [PubMed - as supplied by publisher]

Altered Functional Connectivity Observed at Rest in Children and Adolescents Prenatally Exposed to Alcohol.

Thu, 07/25/2019 - 15:37
Related Articles

Altered Functional Connectivity Observed at Rest in Children and Adolescents Prenatally Exposed to Alcohol.

Brain Connect. 2018 10;8(8):503-515

Authors: Little G, Reynolds J, Beaulieu C

Abstract
Studies of brain structure in fetal alcohol spectrum disorder (FASD) have shown the global and focal effects that prenatal alcohol exposure (PAE) has on the brain, suggesting but not measuring altered function in FASD. This study aimed to (1) identify resting-state functional networks in children and adolescents with FASD, (2) investigate functional connectivity differences compared with healthy controls, and (3) assess the links to cognitive deficits. Participants included 66 children/adolescents with FASD (aged 5.5-18.9 years) and 67 healthy controls (aged 5.8-18.5 years) scanned across four sites as part of the NeuroDevNet study. Six core functional networks with 27 regions of interest (ROIs) were examined using seed-based and ROI-to-ROI analyses. Average seed-based connectivity maps showed significant spatial overlap of positively correlated regions for all six core networks between FASD and controls, but there was less overlap for negatively correlated regions. ROI-to-ROI matrices demonstrated lower internetwork connectivity between regions primarily associated with the salience network (anterior cingulate cortex and bilateral insula), frontal-parietal network (bilateral posterior parietal cortex), and language network (right posterior superior temporal gyrus). Post hoc correlations of the FASD participants without medication revealed a relationship between functional connectivity and performance on two cognitive tests associated with mathematics ability and attention. Even though participants with PAE exhibit very similar intranetwork functional connectivity patterns as controls, their lower internetwork functional connectivity suggests underlying deficits in the functional network brain architecture that may be related to cognitive impairment.

PMID: 30289280 [PubMed - indexed for MEDLINE]

Visual brain plasticity induced by central and peripheral visual field loss.

Thu, 07/25/2019 - 15:37
Related Articles

Visual brain plasticity induced by central and peripheral visual field loss.

Brain Struct Funct. 2018 Sep;223(7):3473-3485

Authors: Sanda N, Cerliani L, Authié CN, Sabbah N, Sahel JA, Habas C, Safran AB, Thiebaut de Schotten M

Abstract
Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.

PMID: 29936553 [PubMed - indexed for MEDLINE]

Pages